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A few articles have been hinting about big, exciting developments in set theory. That 
sounds like an oxymoron already. It has to do with finding the right axioms for set theory. 
The ancient Greeks used axioms and proofs as solid grounding for their mathematics, 
starting with definitions and obvious truths, and deriving everything from there. Set theory 
now is the foundation for all mathematics. Yet its axioms are not quite obvious, and if not 
carefully crafted, they could even be inconsistent. Now we know that they are also 
incomplete - there are true statements of set theory that cannot be proven - and there are 
areas where more axioms are needed. This has been an issue for the last six decades. 
 
It sounds like a resolution is at hand. We finally have axioms that can clarify the structure of 
the set-theory universe.  While there are some things that an axiom system can never 
prove, we can live with those. But re the axioms, the problem now is that there is not just 
one solution, but two - and they are mutually exclusive.  
 
It's impossible to explain all of that in full detail in a short article. This note is an attempt to 
summarize the key issues for a math-friendly but non-expert reader. There is now some 
material helpful at that level, and slightly beyond it. Some good examples are Natalie 
Wolchover (2013 & 2021) in Quanta Magazine. A more detailed discussion is in Jefferey 
Schatz (2019), his philosophy PhD dissertation on how to decide between the two 
competing axiom systems.  
 
In this note, the difficult details - especially a new way to create sets called "forcing" - are 
summarized conceptually, which hopefully will be enough to get an intuitive feeling for the 
situation. We start with the history that led us to the current, but still fairly new, ZFC axioms 
of set theory and their goal to formalize mathematics in a complete and decidable way. 
Next addressed are the problems that arose, starting with the discovery that axioms strong 
enough to formalize mathematics could not be proven to be consistent. And so if they are 
consistent, there have to be true but unprovable theorems - the fact that they're consistent 
being one such.  
 
That is a general problem with any axiom system. For set theory, the ZFC axioms more 
specifically turn out to have problems sorting out how to measure infinity. They have 
actually come up with ways to do that, and there are big and then bigger then still bigger 
sizes of infinity, and those just keep on going. But how to do that in practice is difficult 
already for the real numbers used in calculus - set theorists can't quite figure out how to 
express the size of that infinitely large set. The set of subsets of the natural numbers has 
the same issue - and this generalizes to any infinite sets of subsets.  We summarize these 
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issues, then look at the solutions coming out: make new axioms. How to do that and the 
recent alternative answers are discussed, and a discussion section wraps it up. 

History of Axiom Systems 
Set theory is about axioms, and theorems derived from them. A set is just a collection of 
things - like the set of pillows on my sofa - but a more specific definition is needed for 
mathematics. Axioms came to us from the ancient Greeks. They were ideas so obvious or 
sensible that they do not need any justification, and which everything else can be derived 
from. Euclid's Elements, circa 300 BC, compiled the work in geometry and number theory 
from the preceding centuries of Greek mathematicians, such as the Pythagoreans from 
around 500 BC. Euclid reported on their axioms, theorems, and proofs. The Pythagoreans 
had their famous theorem about the hypotenuse, and from that they realized that some 
numbers, like the square root of 2, could not be expressed as a ratio of integers - they were 
not ratios, so were deemed "irrational." Pythagoras himself considered this result to be 
scandalous. The Greeks were influenced by the Babylonians and Egyptians before them, 
and India had its own systems that influenced all these. Ancient China had logic systems 
but these had been abandoned until Indian ideas like Buddhism revived them. The Greek 
Stoic school's logic system closely resembled modern predicate logic. See Mates (1953). 
 
The late 1800s and early 1900s experienced a major revival, renewal, and formalization of 
logical reasoning. Peano, Cantor, Frege, Dedekind, Hilbert, Zermelo, Russell, Gödel, Tarski, 
and Cohen are some of the famous contributors. Frege in 1879 introduced symbolic logic, 
with formal symbols like  and  (for some ... and for every ...) with formal rules for the 
expression of logical statements. This was needed because logic using natural language 
could run into ambiguities, and these were problems for mathematical proofs. A somewhat 
silly example is "Every girl kissed a boy." Was that a particular boy, or possibly a different 
one for different girls? Both of those versions can be formalized as different statements in 
the formal system, e.g., "there is a boy that every girl kissed", or "for every girl, there is a boy 
that she kissed." Same for "All the inhabitants of the islands were men or women." That 
could be "all the inhabitants of all the islands were men or they were all women," or "all the 
inhabitants of each island were men or they were women," or "all the inhabitants of all the 
islands identified simply as male or female." 
 
Russell's paradox from 1901 upended the efforts of Frege. He showed that Frege allowed 
the set of all sets that are not members of themselves. If that set is not a member of itself, 
then by definition it is a member of itself, which would then make it not a member of itself, 
... . Contradiction! This formulation came from allowing a set of all sets, which was of 
course a member of itself. That is now a taboo in all current systems. 
 
Zermelo set out to create a new, consistent, set of axioms for set theory, first in Zermelo 
(1908). Fraenkel (1919) and Skolem (1922) made a few modifications. Zermelo (1930) is a 
finalized report. The result is the ZF axioms, now called the ZFC axioms, to emphasize that 
they contain the axiom of choice (AC). That axiom states that if A is a set of non-empty sets, 
then there is another set B that contains an element from each set in A. There is some 
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question as to whether that statement is self-evident. Gödel and Cohen did separate 
proofs that AC is consistent with and independent of the other ZF axioms. But some other 
axioms have been tried as alternatives to it now and then.  
 
Zermelo argued that self-evident or not, we need AC for its results, and that is what is 
important when setting up a system of axioms. The argument based on results has become 
known as the extrinsic approach to axiom justification. That is now a criteria used for 
deciding among the new contenders. Another is that proposed axioms should be 
independent of and consistent with the other axioms. 
 
Hilbert in the 1920s set out a program to express and develop all of mathematics from set 
theory. That was straightforward, because you can define numbers and other 
mathematical objects as types of sets. But his program also called for the system to be 
able to establish the truth or falsity of any mathematical statement through proofs and for 
the axioms themselves to be provably consistent. That didn't turn out so well.  

Undecidable Statements 
Kurt Gödel shocked the mathematical world with the proof in his 1931 papers that if the 
axioms of arithmetic or any stronger system like set theory are consistent, then there are 
true statements in the theory that cannot be proven from the axioms, one such being the 
fact that the axioms are in fact consistent. That is the incompleteness theorem - a set of 
axioms can never decide every question. And the axioms cannot be proved to be 
consistent anyway. Hilbert's program had crashed. 
 
Gödel's proved his theorems by coding all mathematical statements as numbers that 
could be decoded through their prime factorizations. That was not so hard because by then 
the axioms and proofs in several key mathematical areas, like number theory, calculus, and 
geometry had been written out in formal symbolic logic notation. So he just had to develop 
a coding system to put all those symbols and combinations of them, like proofs, into a 
language written in numbers. Then he showed further that properties of statements, like 
being an equation, etc. could be coded similarly. One example: a statement has the 
property of being provable if it the last line of a derivation (which was itself defined as a 
specific combination of statements, etc.). The hard part was next: the self-reference 
lemma. This showed that any statement that asserts a property can be applied to the 
number encoding that statement. For instance, there is a number that encodes the 
statement "This statement's number is greater than 100." So that number is a sentence that 
refers to itself. The proof of that lemma requires digging into the coding, and I'm willing to 
assume that it is right. Such self-reference sounds dangerously close to Russell's set of all 
sets, but Gödel delicately tiptoed around the potential inconsistencies. 
 
From there, the rest is straightforward. The sentence "This statement is not provable" could 
now be expressed as a statement in arithmetic. Note that if it is provable, then it is false. 
But a false statement cannot be provable under the assumption that the axioms are 
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consistent. So if the axioms are consistent, this statement must be unprovable. Then what 
it says is true. Not quite a contradiction there: it is a true, unprovable statement.  
Once you've proved that if the axioms are consistent then this statement is unprovable, you 
can't prove that the axioms are consistent, as then you would have proved the statement. 
Thus if the axioms are consistent, you cannot prove that they are consistent.  
 
A further consequence is that you cannot formalize the property of "truth" within arithmetic 
like you can for "provable." If you could, you can get the statement "This statement is not 
true." Then if it is true, it is not true. But if it is not true, it is true - an actual contradiction!  
 
Even though incompleteness upended Hilbert's program, after a while practicing 
mathematicians started to dismiss the incompleteness of arithmetic as largely irrelevant. 
Gödel’s unprovable statement was nothing like the potential theorems they were working 
on, and they were not coming across actual problems of undecidability.  Further, there 
were some proofs of consistency of axiom systems coming out. In 1936, Gerhard Gentzen 
showed that you could prove Peano's axioms were consistent if you used a slightly stronger 
set of axioms that included transfinite induction. In 1926, Tarski reformulated the axioms 
for geometry, and showed that plane geometry is consistent, complete and decidable. 
Every statement can be proved or disproved from the axioms, and there is a rule for how to 
decide them. Geometry is too small a system to code math into, so it is not included in the 
incompleteness theorem. When you could prove consistency of a set of axioms, it could 
only be within a stronger system. Nonetheless, Hilbert's program was doomed. Not much 
later, the axioms of set theory were having even bigger problems. 

Sizes of Infinities 
Two ways have been developed for counting the sizes of sets, namely the ordinal and 
cardinal numbers. For finite sets these are the same, but it gets interesting for infinite sets. 
An ordinal is a well-ordered set, i.e., it has an ordering relationship, written a < b, between 
its elements, and there is a least element. The natural numbers are all ordinals, as is the 
set of all of them. The ordinals as defined in set theory start with 0 = , the empty set. Then 
1 = {0} (the set containing 0), 2 = {0,1}, 3 = {0,1,2}, ... .  The definition is that an ordinal is the 
set of all smaller ordinals. This is well-ordered by defining "<" as the membership 
relationship: if a is a member of b, then a<b. This process first defines the finite ordinals 0, 
1, 2, ... . Then the ordinal  is defined as the set of all finite ordinals, which by definition of 
"<" as set membership is greater than all of them. That's an example of a limit ordinal - one 
that is not a successor of another ordinal. Still, every ordinal is the set of all smaller 
ordinals. Continue + = union of  and {  }, which contains  as an element, and alsoo 
as a subset. Then continue with + , etc. to get   ,. The set of all of those multiples 
of  is . Keep adding 1 then taking limits to get , ..., , then towers of powers of more 
and more 's. The ordinal after all of those towers, i.e., the set of all of them, is called . 
Then again add 1, etc. and keep going.  
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Cardinal numbers are measures of how many elements are in a set, regardless of order. 
The cardinal sizes of sets are compared by matching up elements of the two sets. For 
instance, 12 eggs match up 1:1 with the dimples in an egg carton. If there is any such 1:1 
mapping, the sets have the same cardinality.  
 
The infinite sets start off with N(0) being the cardinality of the natural numbers. Any set that 
has a 1:1 mapping with the natural numbers also has cardinality N(0), i.e., is a countable 
set. For instance, the even numbers are countable. The 1:1 mapping of the evens with the 
natural numbers is that an even number b maps to b/2. That gets all the natural numbers.  
 
To show that a and b have the same cardinality, you don't have to find an actual 1:1 map. It 
is often easier to map a to a subset of b, then b to a subset of a. For instance, the positive 
rational numbers can match with the positive integers by this method. Any positive integer 
n is already a ratio n/1. To show that all the rationals can be mapped into the natural 
numbers, picture an infinite grid of pairs of positive integers, representing numerators and 
denominators of fractions, put into a rectangle going upward 1, 2, 3, ..., for the numerators, 
and going across 1, 2, 3 ... for the denominators. The bottom corner is the point (1,1). You 
can number the whole grid with a single string of integers by snaking up along the 
diagonals. Start with 1 for (1,1) then continuing 2, 3, 4, 5, etc. for (2,1), (2,2), (3,1), (3,2), 
(3,3), etc. That gives every pair a positive integer match. Each rational number a/b 
corresponds to the pair (a,b). But some of those pairs will have common factors and so will 
not be in lowest terms. Toss those out. Then you have a mapping from the positive rational 
numbers into a subset of the positive integers. Thus there are N(0) rational numbers. This is 
a form of the diagonal argument. 
 
Call the set of all countable ordinals 1. By the definition of ordinals, it is an ordinal - it 
consists of all the ordinals before it. It cannot be countable, or it would be a member of 
itself, so it is the smallest uncountable ordinal. (Any smaller ordinal would be an element 
of it, as is true of all ordinals.) It is then defined as N(1), the first cardinal number greater 
than N(0). (The usual notation for these cardinals is aleph0 and aleph1, ... using the Hebrew 
letter aleph, but here N(x) will only be used for cardinal numbers, and using parens instead 
of subscripts will avoid having subscripts within superscripts. This simplifies the notation a 
bit.) The cardinal number of a set is defined as the smallest ordinal number it can be put 
into a 1:1 correspondence with. This gives that N(2) is the ordinal that is the set of all 
ordinals of cardinality of N(1) or less, etc. for N(3), N(4) ... . This leads up to N(), the set of 
ordinals N(j) with integer j, and the cardinals just keep going up from there N(+1), etc., as 
do the ordinals. 
 
The real numbers in [0,1) are each strings of N(0) digits. In binary notation, which uses 0.1 = 
1/2, 0.01 = 1/4, etc., you can also write reals as strings of bits, 0 or 1. Then any real number 
x in [0,1) defines a subset Ax of the natural numbers by the rule: put the number k in Ax if the 
kth bit of x is a 1, and leave it out if the kth bit is a 0. Moreover, every set of natural numbers 
specifies the bits of the real number x with the same mapping. This is an actual 1:1 map 
between the reals and the subsets of the natural numbers. The real numbers thus have the 
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same cardinality as the set of all subsets of the natural numbers, and this is called 2N(0). (A 
finite set with j elements has 2j subsets.) The next question is, where is 2N(0) on the list of 
cardinals, N(1), N(2), ...? It turns out that the numbering systems are not specified 
sufficiently to answer that question without more axioms. 
 
To start, first note that there are more real numbers than there are natural numbers. That 
means there is no list 1, 2, 3, ... that includes all of the reals. You can show that by starting 
with an arbitrary list of N(0) real numbers, and then showing that there has to be another 
real number that is not in the list. Just define the kth bit of the new real number by 1 - the 
kth bit of the kth real number in the list. That new number won't be anywhere on the list 
because it differs in at least one bit with every number on the list. This is another diagonal 
argument. Therefore no countable list of natural numbers can include all the reals, and 2N(0) 
> N(0). In fact, for any cardinal N(j), 2N(j) is strictly greater than N(j). 
 
Cantor hypothesized that 2N(0) is N(1), it's smallest possible value. This is called the 
continuum hypothesis, or CH. Cantor was never able to prove that from the ZFC axioms, 
and now we know that CH is undecidable in ZFC. Details on that are below. Unlike in 
number theory, this shows that there is a real question in set theory that mathematicians 
care about but which is undecidable from the established axioms. One or more new 
axioms is needed to specify the cardinality of the real numbers. 
 
In a way this is not so surprising, as the ZFC axioms were built up recently to try to create a 
formal mathematical structure that would resemble our intuitive ideas about sets and 
which could be used to formalize the rest of mathematics. Arithmetic and geometry had 
gone through similar developments over centuries, and we now have well established 
axioms for them. But set theory is new and still developing. And counting sizes of infinities 
is a new process within it. Mathematicians feel that we should be able to figure out how 
many subsets of natural numbers there should be - that has to be a specific cardinal 
number. So it's: good start, Zermelo, but keep going. We need more axioms. 

Adding Axioms to ZFC 
The ZFC axioms start with a few definitions to say what a set is (e.g., it is defined by what its 
elements are), and then describe ways to specify some sets, like the empty set, the set 
containing that, etc. From there, you can use formulas of set theory to define subsets of a 
set (but you can't define a set with a formula except for subsets of existing sets). If you have 
two sets, then some other set has those two as its elements. Unions of sets (made by 
combining them) are sets, and for every set, there is a set of its subsets. There is an infinite 
set. If c is a set and f is a function on the elements ci of c so that f(ci) is a set, then there is 
another set that contains all of the f(ci). The axiom of choice says that if c is a set whose 
elements are all non-empty sets, then there is a set that has one element from each 
element of c. Those are enough rules to build up the structures needed for most of 
mathematics. But more are needed for the unanswered questions about sets themselves. 
What we are looking for new axioms that give other ways to define more sets. But we want 
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to make as sure as we can that the new axioms do not lead to contradictions. Plus we want 
them to give us an expanded vision of set theory and to solve some problems, like CH.  
 
To spell out the proposed new axioms, two hierarchies of sets are needed, namely V, the 
Von Neumann universe of sets, and L, the constructible universe. 
 
V is indexed by the ordinal numbers. It starts with V0 = . Then Vb+1 is the set of all subsets 
of Vb. You can continue this to limit ordinals c like c = , the set of finite ordinals. Vc is the 
union of all of the Vb stages for b < c. V is the whole Von Neumann universe, but it is not a 
set - it is not defined by the methods of defining sets that the ZFC axioms describe. It is too 
big - like the set of all sets. It is often considered to be a class, which is a grouping too big to 
be a set. There is a class of all ordinal numbers as well - it's not a set either. Von Neumann 
studied V, but it was initially defined in Zermelo (1930). The letter V was used, from the 
Latin word "verum," to represent the universe of all sets as early as Peano in 1889. 
 
The constructible hierarchy L is also indexed by ordinals. L is built up in stages like V is. La is 
the constructible sets in Va. They are the sets that can be defined by a formula of set theory 
in terms of the elements in the lower stages of L. As Wikipedia contributors (2023) put it: 
 
"In von Neumann's universe, at a successor stage, one takes Va+1 to be the set of all subsets 
of the previous stage, Va. By contrast, in Gödel's constructible universe L, one uses only 
those subsets of the previous stage that are definable by a formula in the formal language 
of set theory, with parameters from the previous stage and, with the quantifiers interpreted 
to range over the previous stage." 
 
The constructible sets thus can only include subsets which can be defined explicitly, so 
you know what they are. But they are not necessarily all of the sets. Focusing on 
constructible sets is called "the inner model program." 

Forcing and Forcing Axioms 
One key concept in making new sets is forcing, introduced by Paul Cohen (1963) to prove 
that there are models of the ZFC axioms in which there are more than N(1) real numbers 
and sets of natural numbers. Gödel (1940) had proved that there are models with exactly 
N(1) reals as CH says. But after Cohen's proof, we know that not all models of ZFC agree 
with CH, which is what makes CH independent of those axioms.  
 
Even before Cohen's proof, Gödel felt intuitively that there were N(2) reals (see Gödel 
1940), and that the CH would eventually prove to be an example of his incompleteness 
theorem. In 1947 he wrote “the role of the continuum problem in set theory will be this, that 
it will finally lead to the discovery of new axioms which will make it possible to disprove 
Cantor’s conjecture.” So Cohen's proof must not have been a shock to him. 
 
Forcing is a way to add sets to a model to generate a new model that has some desired 
property. In this case Cohen started with a model of ZFC set theory, and added enough sets 
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to give an expanded model of ZFC with the property that there are N(2) real numbers, and 
N(2) subsets of natural numbers.  
 
Cohen looked closely at the definition of the cardinality of a set X. It is N(z) if there is a 1:1 
mapping between X and N(z). A mapping is actually itself a set: a set of ordered pairs <a, b> 
with a in X and b in N(z), with no repeats of a's or b's. The map is 1:1 if all the elements of X 
and of N(z) are included. A model of ZFC is a set in which all the axioms hold. But not all the 
sets in V have to be in the model for it to satisfy the axioms. For instance, not all of the 
actual 1:1 maps have to be in the model. Since CH was already known to be consistent 
with ZFC, there is a model that has a 1:1 map of its set of reals with its N(1). Forcing starts 
with that, then builds another model that has a map of its reals with its N(2).  
 
Exactly how forcing can add sets to a model with a specific desired property is where the 
work comes in, and it requires several new concepts, such as filters, splitting conditions, 
forcing conditions, and posets. The detailed definitions of those are beyond the scope of 
this note. But the 10,000-foot view is that a filter is a set of the large subsets of another set 
and a poset, or partially ordered set, is an ordering of the sets in a filter. Forcing builds up a 
new desired set one point at a time. It starts with a filter of sets having a desired property, 
like being uncountable. Then the posets are sequential intersections of more and more 
sets in the filter. If done right, the intersection of all those sets ends up with a specific 
chosen element. Then repeat all that with different starting points enough times to fill up 
the new desired set. That manages to create a set that will have the desired property - like 
being in a 1:1 map with N(2) - in the new model. 
 
Wikipedia contributors (2024) outline a way to do the forcing process using the 
Löwenheim–Skolem theorem. It says that there are countable models of the whole ZFC set 
theory. That sounds impossible, since there are uncountable sets in ZFC. It can be done by 
restricting which 1:1 maps are in the model. A countable model M of ZFC has a countable 
ordinal N(1)M in it that inside the model looks uncountable, because the model has in it no 
1:1 maps of N(1)M with the natural numbers. The same can be done for N(2)M, etc. 
 
Wolchover (2021) illustrates this for a real number example, but it is a terse explanation. I 
believe this is the idea: start with a real-number line that has N(1)M points on it inside the 
model M, but look at it in V where those points constitute only a countable subset of the 
reals. Each point on the line splits the reals, excluding that point, into two segments: those 
greater than the point, and those less. Do this then for another of those points, then 
another, etc. until you have a splitting for each original point. Since N(1)M is a countable 
ordinal in V, its elements are ordered 1, 2, 3, ... . Go through the N(1)M points on the line in 
this order and pick either the upper or lower section for each. Cohen shows it is possible to 
do this in a way so each step has a segment you can pick that overlaps with the selected 
segments from all the previous steps, so take that one. The selected segments are a filter, 
and the sequence of intersections of the segments is a poset. Cohen shows that all of 
those segments in the end will overlap (intersect), but only at a single real number in V that 
is not in M. This is a countable sequence of open intervals that intersects at a single real 
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number. I guess that's plausible in that a real number is a countable list of digits, and the 
digits up to any point put the number in the interval of reals that agree up to that digit.  
 
Anyway, then use that single number in building a new model W that adds points to M. 
Repeat with another starting point to get another new element of W, etc. You can map the 
additional points 1:1 to the countable ordinal N(2)M as you add them, and get an 
uncountable number of new reals, as measured in the new model. This forcing process is 
designed to make the new set of reals uncountable within W. Then you can use the other 
axioms of ZFC to expand W to be a model of ZFC by including subsets, power sets, etc. 
That's broadly how forcing gets new sets with specified properties into a model of ZFC. 
 
Spelling out the details would be a big step, but now at least we can see that the central 
concept of forcing is adding sets to a model to get a new model having a desired property. 
This can be extended to "forcing axioms," which say that the type of set added to M to get W 
actually exists within V.  Schatz (2019) notes that a key point here is that if ZFC is 
consistent, then ZFC expanded with a forcing axiom is also consistent. That's because 
there is a model of ZFC + the new axiom, namely the W just created. Forcing axions provide 
a way to define sets by describing properties. In ZFC you can use a formula to define a 
subset, but forcing axioms define new sets that do not have to be subsets of another set.  
 
Forcing axioms can make 2N(0) be N(2), or N(780), or anything. But once you add such an 
axiom, using forcing to add more sets has to be consistent with that axiom. To add a forcing 
axiom, you need more justification than just because I can. The search for new axioms 
looks at what the possible axioms can tell you about the universe of sets. Part of this gets 
into the study of what are called large cardinals. 

Large Cardinals 
A different way to expand set theory is with large-cardinal axioms. These specify new higher 
cardinal numbers that are not definable with the set-building processes of the ZFC axioms. 
They are very large. While there is no precise definition of large, sets known to be 
inconsistent with ZF are usually excluded. Also, if k is a large cardinal, it a model of ZFC - 
that is all of ZFC set theory could be contained within it without violating any axioms. If 
such a cardinal exists, ZFC is consistent because it has a model. But if ZFC is consistent it 
cannot prove that it is due to the incompleteness theorem, so it cannot prove the existence 
of large cardinals. Each one needs its own axiom.  
 
One example is inaccessible cardinals. If a cardinal k is strongly inaccessible, then for any 
cardinal c less than k, the set of its subsets 2c is also smaller than k. Also k cannot be the 
union of fewer than k smaller sets. A powerset 2c of a set c is a set by ZFC, as are unions of 
known sets, but these won't get you to an inaccessible according to this definition. Hence 
the term. But you could make an axiom that they exist. 
 
There is an increasing hierarchy of larger and larger cardinals. But none can be created 
using the ones below it. A lot of them have definitions that are not intuitive or not obviously 
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so large. Still, each has all the traits of the ones below it, and an axiom for it would imply 
that all the ones below it exist. All the large cardinals are inaccessible, for instance. 
 
An important type of large cardinal is measurable cardinals. These have a measure, which 
is a definition of large vs. small subsets according to a few rules. The large ones are the 
cardinal itself and things like that, and small subsets include those containing a single 
element, plus a few more rules. If k is a measurable cardinal, the intersection of fewer than 
k large sets is also measurable. That makes measurable sound pretty distant from smaller 
sets. Measurable cardinals have some relationship to forcing axioms.  
 
Schatz reports a particularly critical aspect due to Silver (1971): if a measurable cardinal 
exists, the constructible sets as a whole are a very weak part of V, and cannot even 
distinguish among uncountable cardinals. That result created a detour in the inner model 
program. Eventually a sort of ok weakening of constructability emerged that still provides 
information about the makeup of the sets, and could be extended up to measurable 
cardinals. Schatz reports that they found a "canonical, weakly core inner model of a 
measurable." Doing this gets more difficult for the larger cardinals beyond measurable and 
such research is still underway. 
 
A very large cardinal type is the supercompact cardinals. They require advanced notions to 
define but are generalizations of measurable cardinals. Assuming they exist is a very strong 
assumption and leads to a wide array of results. Hamkins etal (2012) say " Assuming the 
existence of a supercompact is a very strong assumption and the large cardinal strength of 
supercompact cardinals is seen in a wide (and bewildering) array of set-theoretic contexts, 
especially the development of strong forcing axioms and establishing regularity properties 
of sets of reals." Schatz details some of this, like a complete characterization of the 
properties of the real numbers. Supercompacts are very useful for establishing 
consistency results for forcing axioms, and much more. The constructible approximation 
has not been built up yet for supercompact k, and Schatz discusses several potential 
barriers that stand in the way.  But if the weak version of constructibles gets to the 
supercompact stage, Woodin (2017) shows that extending that further to all of V becomes 
almost automatic. This goal is called ultimate L.  
 
The large-cardinal program has had a lot of progress and has produced results that are 
useful and illuminating. At least one large cardinal type is likely to survive as an axiom - 
maybe supercompact. That would give all the smaller ones as well, like measurables. One 
thing they do not do, however, is solve CH. It and its negation are not affected by large-
cardinal axioms, it turns out. Basically, one more axiom is needed. Two are battling it out. 

Two Surviving Axioms with Two Opposing Answers to CH 
Research in the 1980's discovered more ways to implement forcing, such as by doing many 
forcings simultaneously. A powerful but risky axiom (requiring supercompact cardinals for 
consistency) called the proper forcing axiom, or PFA, led to some breakthroughs. In 
particular, Stevo Todorčević (1989) showed that PFA proves 2N(0) is N(2), which is one 
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cardinal higher than the N(1) that CH postulates. This was the first natural axiom that found 
CH to be false, and in a specific and surprising way. Schatz reports that it implied that "the 
continuum is as small as it could possibly be without CH being true. Such a size for the 
continuum was not widely seen as very plausible at this time; if CH was false, it was often 
said, it would be wildly false, allowing for a wide scope of interesting behavior of the many 
uncountable cardinals below the size of the continuum. ... (W)ith this discovery, a naturally 
arising axiom candidate for not-CH had been discovered. Since this axiom provided for a 
'small' continuum, with Todorčević's proof the focus of research on not-CH began to shift 
away from the supposed large values for the continuum. The importance of this event is 
quite hard to overstate: while the inner model program had provided axiom candidates 
implying the truth of CH, it is only with the discovery of PFA’s consequences for the size of 
the continuum that proponents of not-CH had a parallel axiom to defend. It is only at this 
point that forcing axioms start to become considered as serious axiom candidates." 
 
In a parallel development, Foreman, Magidor, and Shelah (1988) found a maximal 
extension of PFA, which they called Martin's Maximum (MM). The name comes from the 
fact that any further addition of forcing posets beyond it would create contradictions. It 
seems that using multiple posets simultaneously lets you postulate the existence of 
multiple properties of objects.  In a sense MM implies that forcing is complete: nothing 
further can be added by using forcing. It postulates the richest and most complex universe 
of sets that you can create with forcing axioms. MM also leads to 2N(0) = N(2), and it proves 
more theorems about large cardinals. It is not really much stronger than PFA, though, and 
its consistency also depends on supercardinals. An extension of it, MM++, allows for more 
detailed specification of the forcing conditions.  
 
A more recent very strong general axiom called (*) asserts that sets defined in a specific but 
very broad manner exist. This is another way to define new sets beyond ZFC and does it in a 
way that looks more specific than forcing. It allows definition of sets y according to the 
formula: for every x for some y the property F(x,y) holds, where the property F is defined 
over the sets already specified.  Wolchover (2021) gives an example:  "for every set x of N(1) 
reals, some real y is not in x." This says the reals are bigger than N(1). 
 
(*) is developed using an axiom inconsistent with AC and so was believed to be 
inconsistent with MM, even though it also gives 2N(0) = N(2) and many of the other results of 
MM.  Wolchover reports that Woodin found a way to use forcing to expand the (*) universe 
to one that was consistent with AC. That produced MM++. So (*) and MM++ could be 
consistent with each other. 
 
It was still a confusing situation for set theorists. In a recent exciting paper, Asperó and 
Schindler (2021) prove that (*) and MM++ are in fact equivalent. That was both surprising 
and comforting, and has led to a lot of enthusiasm towards accepting them as the right 
axiom, and finally agreeing that 2N(0) = N(2). Oddly enough, this axiom implies that 2N(1) = 
N(2) as well, which is CH-like.  
 



 12 

There is still work going on that would support CH, however. It basically comes down to the 
axiom V = ultimate L, i.e., all sets are weakly constructible, and it implies CH. As noted 
above, this is contingent on being able to formally specify ultimate L, which would result 
from being able to characterize Lk for a supercompact k, which is daunting. In general, CH 
holds when the universe is limited to constructible sets, even in their weak form.  
 
The CH axioms do not produce the rich, complex universe of sets that (*) = MM++ does. The 
ultimate L proponents argue that set theory is basically about large cardinals, and being 
able to completely characterize them as a specific, sort of constructible, structure would 
complete set theory. But V = ultimate L is not in the form of a rule for defining new sets like 
the other axioms are. It is more like "stop here - we're done." It is a different form of 
statement than the ZFC axioms, or MM++ or (*). 

Deciding 
Schatz explores in detail a test of alternative axiomatizations proposed by Penelope Maddy 
(1997) called "maximization." It's a way to compare the results produced by different 
proposed axioms as well as seeing how much insight each of them gives into the results of 
the other. The methodology is beyond the scope of this note, but Schatz' conclusion is that 
MM++ wins easily over V = ultimate L. 
 
Basing such a conclusion on the results produced by the axioms instead of their obvious 
truth is what Gödel (1947) calls the "extrinsic" approach. Schatz details arguments of 
Zermelo, Russell, Gödel, Cantor, Hilbert, etc. in the late 1800s and early 1900s that were of 
this nature. The result of being able to formalize all of mathematics in set theory is the goal, 
and so is more important than an axiom being obviously true. Informally, the test is "What's 
that axiom do for me, anyway?" The varied results coming from MM++ are impressive, and 
they provide an expansive universe of sets that theorists find meaningful and illuminating.  
 
Ultimate L would be a wonderful and very interesting thing to have. It would give a picture of 
the structure of supercompact cardinals, or at least some part of them. But that would still 
be true if ultimate L were a proper subclass of V instead of being all of it. It is not clear why 
someone might prefer it being all there is. With it you could say that now we have explained 
all of set theory. Job completed. You might feel that under MM++ you get more in V, but all 
that is unexplained and unknowable stuff that is better off being ignored. Hard to say what 
the actual motivations are. These sound like arguments against using the extrinsic 
maximize test. In the end there may not be unanimity it what the axioms should be. 

Discussion 
In the late 1960s when everyone was still digesting Cohen's results, I took an 
undergraduate class in set theory at UC Berkeley. Our professor, Julia Robinson, was a 
stunningly brilliant mathematician and the wife and former student of the famous number 
theorist Rafael Robinson. She told us up front that this class would not get as far as forcing 
or the CH. But one day after class a few of us corralled her to get her feelings about it. She 
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told us that when CH was proved to independent of ZFC, she at first thought that an 
expansive view would end up dominant, with the cardinality of the reals pretty high - the 
large continuum view that was still prominent 20 years later. But she said when she thought 
more about it, a higher cardinal for the reals just meant the existence of fewer 1:1 maps 
between the reals and lower cardinals. It did not mean that there were more sets, just that 
there were fewer mappings. Having more cardinals between N(1) and the continuum didn't 
make the continuum bigger, it just meant that the mappings were more restricted. And the 
mappings are sets themselves - ordered pairs of elements of the two sets. That left her with 
no clear intuition about what was right.  
 
It is interesting that Gödel felt intuitively that the reals were N(2), although he wasn't able to 
convince many people of this. Maybe he was thinking about mappings as well.  
 
The mapping issue applies to the cardinality of any set X. It is N(c) if there is an 1:1 mapping 
of X with N(c). The existence or nonexistence of such a mapping is not purely a property of 
X. It has to do with the other sets that may exist - like the mappings. We know what the 
reals are - all the infinite sequences of digits. Every such sequence is a real number under 
MM++ = (*) or V = ultimate L, and there are no other reals but these in either case. It would 
be hard to accept that there are different real numbers under those axioms. Yet they have 
different cardinalities. Thus the cardinality of the reals tells us more about the other sets in 
the universe given by those axioms, i.e., whether or not there exist 1:1 mappings between 
N(1) and the reals. Maybe N(1), the set of all countable ordinals, is different in the two 
universes due to the existence or not of mappings. What's countable might be up for grabs.   
 
In either case, the cardinality of the reals is not an intrinsic property of that set but depends 
on other things going on in the universe where it is situated. That makes cardinality a less 
satisfactory measure of the size of a set than one may have hoped. Measuring the sizes of 
infinite sets is not totally straightforward. The choice of axiom systems largely is about the 
characteristics of universe of sets they create, and cardinality of power sets, etc. is a result. 
 
The reals are becoming less essential for calculus and analysis anyway. Using set theory 
and model theory, Abraham Robinson (1966) details an approach to calculus and real 
analysis based on infinitesimals. That is what Newton and Leibnitz used informally, but it 
had never been properly developed axiomatically. The limits approach was developed as 
an alternative. Infinitesimals are easier and more intuitive than limits. A positive 
infinitesimal is greater than 0 but less than 1/n for every positive integer n. Their 
reciprocals, unbounded numbers, are greater than any integer but less than ∞ =  1/0.  
 
My feeling is that on extrinsic grounds, I like MM++ = (*) plus supercompact cardinals. 
Those axioms produce a rich universe with discoverable properties, especially about large 
sets. It seems fine that there N(2) reals. Since cardinality is not purely a property of the 
reals this is hard to worry much about. 
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The notion of contradiction weaves through all these discussions. That's what led Zermelo 
to develop the ZFC axioms in the first place. Gödel's incompleteness proof came right up to 
the edge of contradiction but stepped back to find that if the axioms are consistent, they 
must be incomplete and their consistency unprovable. MM++ itself is one step away from 
contradiction: it is the furthest you can push forcing without creating inconsistency. MM++ 
and (*) are based on assumptions that are inconsistent with each other, but somehow the 
universe of sets can be expanded enough to make the two consistent. Anything can be 
proved from inconsistent axioms. The closer you get to that, the more you can prove. 
 
Mathematics is full of rich and mysterious systems that come from a few simple concepts. 
The distribution of prime numbers comes from a simple definition but has open questions 
and more is still being discovered. The "bewildering" scope of results about large cardinals 
that arise in MM++ is like that. Out of a few simple rules, a vast complex universe of sets 
comes out - a playground for set theorists to explore while skirting the edge of impossibility. 
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